Skip to main content

Articles

How many words do you need to learn?

An analysis of English vocabulary* has found that the first 1000 words account for 84.3% of the words used in conversation, 82.3% of the words encountered in fiction, 75.6% of the words in newspapers, and 73.5% of the words in academic texts. The second 1000 accounts for about another 5% (specifically, 6% of conversation, 5.1% of fiction, 4.7% of newspapers, 4.6% of academic texts).

I recently reported on a finding that older adults whose life-space narrowed to their immediate home were significantly more likely to have a faster rate of global cognitive decline or develop mild cognitive impairment or Alzheimer’s.

Transfer refers to the ability to extend (transfer) learning from one situation to another. For example, knowing how to play the piano doesn’t (I assume) help you play the tuba, but presumably is a great help if you decide to take up the harpsichord or organ. Similarly, I’ve found my knowledge of Latin and French a great help in learning Spanish, but no help at all in learning Japanese.

Except in the cases of stroke or traumatic brain injury, loss of cognitive function is not something that happens all at once. Cognitive impairment that comes with age may be thought of as belonging on a continuum, with one end being no cognitive impairment and the other end being dementia, of which Alzheimer's is the most common type.

The conventional view of brain development has been that most of this takes place in utero and in the first three years, with the further development continuing until the brain is fully mature at around 10-12 years of age. The turbulence of adolescent behavior has been deemed to be mostly caused by hormonal changes. Piaget, who identified four stages of cognitive development, assessed that his highest stage — that of formal, abstract reasoning — occurred around 13-14 years (although not everyone reaches this level, which requires appropriate education).

Does emotion help us remember? That's not an easy question to answer, which is unsurprising when you consider the complexities of emotion.

First of all, there are two, quite different, elements to this question. The first concerns the emotional content of the information you want to remember. The second concerns the effect of your emotional state on your learning and remembering.

The effect of emotional content

It does seem clear that, as a general rule, we remember emotionally charged events better than boring ones.

As we all know, rhyme and rhythm help make information more memorable. Here's a few ideas that may help you use them more effectively.

Rhythm and rhyme are of course quite separate things, and are processed in different regions of the brain. However, they do share some commonalities in why and how they benefit memory. Rhyme and rhythm impose pattern. For that reason, rhyme and rhythm are particularly valuable when information is not inherently meaningful.

Short-term vs long-term memory

Working memory is a relatively recent term, a refinement of an older concept - that of short-term memory. Short-term memory was called thus to distinguish it from "long-term memory" - your memory store.

Humans have a long tradition of holding genes responsible for individual differences in behavior (of course, we called it "blood", then, or "family"). In the 20th century, a counter-belief arose: that it was all down to environment, to upbringing. In more recent decades, we have become increasingly aware of how tightly and complexly genes and environment are entwined.

Graphic summaries are summaries that reorganize the text. Two examples of graphic summaries are outlines and graphic organizers.

In an outline, topics are listed with their subtopics in a linear format, like this:

Branches of Government (U.S.A.)

I.

Executive Branch