Retraining the brain

A fascinating article recently appeared in the Guardian, about a woman who found a way to overcome a very particular type of learning disability and has apparently helped a great many children since.

As a child, Barbara Arrowsmith-Young had a brilliant, almost photographic, memory for information she read or heard, but she had no understanding. She managed to progress through school and university through a great deal of very hard work, but she always knew (although it wasn’t recognized) that there was something very wrong with her brain. It wasn’t until she read a book (The Man with a Shattered World: The History of a Brain Wound - Amazon link) by the famous psychologist Luria that she realized what the problem was. Luria’s case study concerned a soldier who developed mental disabilities after being shot in the head. His disabilities were the same as hers: “he couldn't tell the time from a clock, he couldn't understand bigger and smaller without drawing pictures, he couldn't tell the difference between the sentences ‘The boy chases the dog’ and ‘The dog chases the boy’.”

On the basis of enriched-environment research, she started an intensive program to retrain her brain — 8-10 hours a day. She found it incredibly exhausting, but after 3-4 months, she suddenly ‘got it’. Something had shifted in her brain, and now she could understand verbal information in a way she hadn’t before.

The ‘Arrowsmith Program’ is now available in 35 schools in Canada and the US, and the children who attend them have often, she claims, been misdiagnosed with ADD or ADHD, dyslexia or dysgraphia. She has just published a book about her experience (The Woman Who Changed Her Brain: And Other Inspiring Stories of Pioneering Brain Transformation - Amazon link).

I can’t, I’m afraid, speak to the effectiveness of her program, because I can’t find any independent research in peer-reviewed journals (this is not to say it doesn’t exist), although there are reports on her own website. But I have no doubt that intensive training in specific skills can produce improvement in specific skills in those with learning disabilities.

There are two specific things that I found interesting. The first is the particular disability that Barbara Arrowsmith-Young suffered from — essentially, it seems, a dysfunction in integrating information.

This disjunct between ‘photographic memory’ and understanding is one I have spoken of before, but it bears repeating, because so many people think that a photographic memory is a desirable ambition, that any failure to remember exactly is a memory failure. But it’s not a failure; the system is operating exactly as it is meant to. Remembering every detail is counter-productive.

I was reminded of this recently when I read about something quite different: an “inexact” computer chip that’s 15 times more efficient, “challenging the industry’s 50-year pursuit of accuracy”. The design improves efficiency by allowing for occasional errors. One way it achieved this was by pruning some of the rarely used portions of digital circuits. Pruning is of course exactly what our brain does as it develops (infancy and childhood is a time of making huge numbers of connections; then as the brain matures, it starts viciously pruning), and to a lesser extent what it does every night as we sleep (only some of the day’s events and new information are consolidated; many more are discarded).

The moral is: forgetting isn’t bad in itself. Memory failure comes rather when we forget what we want or need to remember. Our brain has a number of rules and guidelines to help it work out what to forget and what to remember. But here’s the thing: we can’t expect an automatic system to get it right all the time. We need to provide some direct (conscious) management.

The second thing I was taken with was this list of ‘learning dysfunctions’. I believe this is a much more useful approach than category labels. Of course we like labels, but it has become increasingly obvious that many disorders are umbrella concepts. Those with dyslexia, for example, don’t all have the same dysfunctions, and accordingly, the appropriate treatment shouldn’t be the same. The same is true for ADHD and Alzheimer’s disease, to take two very different examples.

Many of those with dyslexia and ADHD have shown improvement as a result of specific skills training, but at the moment we’re still muddling around, not sure of the training needed (a side-note for those who are interested — Scientific American has a nice article on how ADHD behavioral therapy may be more effective than drugs in long run). So, because there are several different problems all being lumped into a single disorder, research finds it hard to predict who will benefit from what training.

But the day will come, I have no doubt, when we will be able to specify precisely what isn’t working properly in a brain, and match it with an appropriate program that will retrain the brain to compensate for whatever is damaged.

Or — to return to my point about choosing what to forget or remember — the individual (or parent) may choose not to attempt retraining. Not all differences are dysfunctional; some differences have value. When we can specify exactly what is happening in the brain, perhaps we will get a better handle on that too.

In the meantime, there is one important message, and it is, when it comes down to it, my core message, underlying all my books and articles: if you (or a loved one, or someone in your care) has any sort of learning or memory problem, whatever the cause, think very hard about the precise difficulties experienced. Then reflect on how important each one is. Then try and discover the specific skills needed to deal with those difficulties that matter. That will require not only finding suggested exercises to practice, but also some experimentation to find what works for you (because we haven’t yet got to the point where we can work this out, except by trial and error). And then, of course, you need to practice them. A lot.

I’m not saying that this is the answer to everyone’s problems. Sometimes the damage is too extensive, or in just the wrong place (there are hubs in the brain, and obviously damage to a hub is going to be more difficult to work around than damage elsewhere). But even if you can’t fully compensate for damage, there are few instances where specific skills training won’t improve performance.

Sharing what works is one way to help us develop the database needed. So if you have any memory or learning problems, and if you have experienced any improvement for whatever reason, tell us about it!

Add new comment

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Refresh Type the characters you see in this picture. Type the characters you see in the picture; if you can't read them, submit the form and a new image will be generated. Not case sensitive.  Switch to audio verification.