classroom learning

Some Surprising Findings About Learning in the Classroom

  • The quality of the teacher doesn't affect how much students learn (that doesn't mean it doesn't affect other factors — e.g., interest and motivation).
  • Low ability students learn just as much as high ability students when exposed to the same experiences.
  • More able students learn more because they seek out other learning opportunities.
  • Tests, more than measuring a student’s learning, reflect the student’s motivation.

I want to talk to you this month about an educational project that’s been running for some years here in New Zealand. The Project on Learning spent three years (1998-2000) studying, in excruciating detail, the classroom experiences of 9-11 year olds. The study used miniature videocameras, individually worn microphones, as well as trained observers, to record every detail of the experiences of individual students during the course of particular science, maths, or social studies units. The students selected were a randomly chosen set of four, two girls, two boys, two above average ability, two below average ability. 16 different classrooms were involved in the study.

On the basis of this data, the researchers came to a number of startling conclusions. Here are some of them (as reported by Emeritus Professor Graham Nuthall on national radio):

* that students learn no more from experienced teachers than they learn from beginning teachers

* that students learn no more from award-winning teachers than teachers considered average

* that students already know 40-50% of what teachers are trying to teach them

* that there are enormous individual differences in what students learned from the same classroom experiences — indeed, hardly any two students learned the same things

* that low ability students learn just as much as high ability students when exposed to the same experiences

This is amazing stuff!

We do have to be careful what lesson we draw from this. For example, I don’t think we should draw the conclusion that it doesn’t matter whether a teacher is any good or not. For a start, the study didn’t use bad teachers (personally, I had one university lecturer who actually put my knowledge of the subject into deficit — I started out knowing something about the subject (calculus), and by the time I’d spent several months listening to him, I was hopelessly confused). Secondly, there are lots of other aspects to the classroom experience than simply what the student learns from a particular study unit.

Nevertheless, the idea that a student learns as much from an okay teacher as from a great one, is startling. Here’s a quote from Professor Nuttall: “Teachers like the rest of us are concerned for student learning and assume that learning will flow naturally from interesting and engaging classroom activities. But it does not.” !

It’s not so surprising that different students learn different things from the same experiences — we all knew that — but we perhaps didn’t fully appreciate the degree to which that is true. But of course the most surprising thing is that low ability students learn just as much as high ability students when exposed to the same experiences. That, is no doubt the finding that most people will find hardest to believe. Clearly the more able students are learning more than the less able, so how does that work?

According to the researchers, “a significant proportion of the critical learning experiences for the more able students were those that they created for themselves, with their peers, or on their own. The least able students relied much more on the teacher for creating effective learning opportunities.”

This does in fact fit in with my own experiences: marveling at my son’s knowledge of various subjects, on a number of occasions I have questioned him about the origins of such knowledge. Invariably, it turns out that his knowledge came from books he had read at home, rather than anything he was taught at school. (And please believe I am not knocking my son’s schools or his teachers; I have been reasonably happy, most of the time, with these).

In this interview, Professor Nuthall mentioned another finding that has come out of the research — that tests, more than measuring a student’s learning, reflect the student’s motivation. “When a student is highly motivated to do the best they can on a test, then that test will measure what they know or can do. When that motivation is not there (as it is not for most students most of the time) then the test only measures what they can be bothered to do.”


Professor Nuthall’s research studies were cited in the 3rd edition of the Handbook of Research on Teaching (the “bible” for teaching research) as one of the five or six most significant research projects in the world. The research team of Professor Nuthall and Dr Adrienne Alton-Lee (who invented the techniques used in the Project on Learning) was cited in the most recent edition as one of the leading research teams in the history of research on teaching.

[see below for some of the academic publications that report the findings of the Project on Learning (plus an early article on the techniques used in the Project)]

The wider picture

An OECD report on learning cites that, for more than a century, one in six have reported that they hate/hated school, and a similar number failed to achieve sufficient literacy and numeracy skills to be securely employable. The report asks the question: “Maybe traditional education as we know it inevitably offends one in six pupils?”

In a recent special report on education put out by CNN, it is claimed that, in the U.S., charter schools (publicly financed schools that operate largely independent of government regulation) now count nearly 700,000 students. And, most tellingly, recent figures put the number of children taught at home at more than a million, a 29% jump from 1999. (To put this in context, there are apparently some 54 million students in the U.S.).

One could argue that the rise in people seeking alternatives to a traditional education is a direct response to the (many) failings of public education, but this is assuredly a simplistic answer. Public education has always had major problems. At different times and places, these problems have been different, but a mass education system will never be suitable for every child. Nor can it ever, by its nature (basically a factory system, designed to instil required skills in as many children as possible), be the best for anyone.

Indeed, we are closer to a system that endeavors to approach students as individuals than we have ever been (we still have a long way to go, of course).

I believe the increased popularity of alternatives to public education reflects many factors, but most particularly, the simple awareness that there ARE alternatives, and the increased lack of faith in professionals and experts.

Impaired reading skills are found in some 20% of children. No educational system in the world has mastered the problem of literacy; every existing system produces an unacceptably high level of failures. So, we cannot point to a particular program of instruction and say, this is the answer. Indeed, I am certain that such an aim would be foredoomed to failure - given the differences between individuals, how can anyone believe that there is some magic bullet that will work on everyone?

Having said that, we have a far greater idea now of the requirements of an effective literacy program. [see Reading and Research from the National Reading Panel]

These articles originally appeared in the August and September 2004 newsletters.


Project on Learning references

  • Nuthall, G. A. & Alton-Lee, A. G. 1993. Predicting learning from student experience of teaching: A theory of student knowledge acquisition in classrooms. American Educational Research Journal, 30 (4), 799-840.
  • Nuthall, G. A. 1999. Learning how to learn: the evolution of students’ minds through the social processes and culture of the classroom. International Journal of Educational Research, 31 (3), 139 – 256.
  • Nuthall, G. A. 1999. The way students learn: Acquiring knowledge from an integrated science and social studies unit. Elementary School Journal, 99, 303-341.
  • Nuthall, G. A. 2000. How children remember what they learn in school. Wellington: New Zealand Council for Educational Research.
  • Nuthall, G. A. 2001. Understanding how classroom experiences shape students’ minds. Unterrichtswissenschaft: Zeitschrift für Lernforschung, 29 (3), 224-267.

tags strategies: 

Memorizing the Geological Time Scale

In the following case study, I explore in depth the issue of learning the geological time scale — names, dates, and defining events. The emphasis is on developing mnemonics, of course, but an important part of the discussion concerns when and when not to use mnemonics, and how to decide.

The Geological Time Scale

Phanerozoic Eon 542 mya—present

  Cenozoic Era 65 mya—present

    Neogene Period 23 mya—present

Holocene Epoch 8000 ya—present

Pleistocene Epoch 1.8 mya—8000ya

Pliocene Epoch 5.3 mya—1.8 mya

Miocene Epoch 23 mya—5.3 mya

   Paleogene Period 65 mya—23 mya

Oligocene Epoch 34 mya—23 mya

Eocene Epoch 56 mya—34 mya

Paleocene Epoch 65 mya—56 mya

  Mesozoic Era 250 mya—65 mya

    Cretaceous Period 145 mya—65 mya

    Jurassic Period 200 mya—145 mya

    Triassic Period 250 mya—200 mya

  Paleozoic Era 542 mya—250 mya

    Permian Period 300 mya—250 mya

    Carboniferous Period 360 mya—300 mya

    Devonian Period 416mya—360 mya

    Silurian Period 444 mya—416 mya

    Ordovician Period 488 mya—444 mya

    Cambrian Period 542mya—488 mya

Precambrian 4560 mya—542 mya

 Proterozoic Eon 2500 mya—542 mya

 Archean Eon 3800 mya—2500 mya

 Hadean Eon 4560 mya—3800 mya

How do we set about learning all this? Let’s look at our possible strategies.

Memorizing new words, lists and dates


A common trick to help remember the geological time scale is to use a first-letter acronym, such as the classic:

Camels Often Sit Down Carefully; Perhaps Their Joints Creak? Persistent Early Oiling Might Prevent Permanent Rheumatism.

(This begins with the Cambrian Period and moves forward in time; note that in this traditional mnemonic the Holocene Epoch is here thought of by its older name of “Recent Epoch”.)

What’s the problem with this, as a way of remembering the geological scale?

It assumes we already know the names.

The principal (and often, only) purpose of an acronym is to remind you of the order of items that you already know.

A common problem with acronyms (first-letter by definition) is that there are often repeats of initials, causing confusion. A more useful strategy (though far more difficult) might be to use the first two or preferably three letters of the words. This not only distinguishes more clearly between items, but also provides a much better cue for items that are not hugely familiar. For example, here’s one I came up with for the geological time-scale:

Hollow Pleadings Plight Miosis;

Olive Eons Pall Creation; (or Olive Eons Palm Credulous, for a slight rhyme)

Juries Trick Perplexed Carousers;

Devils Silence Ordered Campers.

Because it is extremely difficult to make a meaningful sentence with these restraints (largely because of rare combinations such as Eo- and Mio- and to a lesser extent, Pli, Oli, and Jur), I have used rhythm to group it into a verse. There’s a slight rhyme, but it’s amazing how much power rhythm has to facilitate memory on its own.

It is easier, of course, to construct a sentence with these items if you are allowed to include a few “insignificant” words (i.e., not nouns or verbs) to hold them all together. Here’s a possible sentence, this time starting from the oldest and moving forward to the most recent:

Campers Order Silver Devils to Carry Persons Tricking Jurisprudent Cretins in Palmy Eons of Olive Milk and Pliant Pleadings for Holidays

The problem with both this and the “verse” is that they are too long, given their difficulty, to be readily memorable. The answer to this is organization, and later we’ll discuss how to use organization to reduce the mnemonic burden. But first, let’s deal with another problem.

Although the use of three-letter acronyms lessens the need for such deep familiarity with the items to be learned, you do still need to know the items. With names as strange as the ones used in the geological time-scale, the best strategy is probably the keyword mnemonic (or at least a simplified version).

Looking for meaning

But let’s start by considering the origin of the names. If they’re meaningful, if there is a logic to the naming that we can follow, our task will be made incomparably easier.

Unfortunately, in this case there’s not a lot of logic to the naming. Some of the periods are named after geographical areas where rocks from this period are common, or where they were first found — these are probably the easiest to learn. The epochs in particular, however, are problematic, as they are very similar, being based on ancient Greek (in which few students are now trained), and, most importantly of all, being essentially meaningless.

Let’s look at them in detail. The common cene ending comes from the Greek for new (ceno).

  • Holocene is from holos meaning entire
  • Pleistocene is from pleistos meaning most
  • Pliocene is from pleion meaning more
  • Miocene is from meion meaning less
  • Oligocene is from oligos meaning little, few
  • Eocene is from eos meaning dawn
  • Paleocene is from palaois meaning old

So we have

  • Holocene: entire new
  • Pleistocene: most new
  • Pliocene: more new
  • Miocene: less new
  • Oligocene: little new
  • Eocene: dawn new
  • Paleocene: old new

You could find this helpful (remember that we’re moving backward in time, so that the Holocene is indeed the newest of these, and the Paleocene is the oldest), but the naming is really too arbitrary and meaningless to be of great help.

Better to come up with associations that have more meaning, even if that meaning is imposed by you. Here’s some words you could use:

  • Holocene: holy; hollow; hologram; holly
  • Pleistocene: plasticine; plastic
  • Pliocene: pliable; pliant; pliers
  • Miocene: my; milo; myopic
  • Oligocene: oligarchy; olive; oliphaunt (! Notice that the words don’t have to be familiar to the whole world, even the dictionary-makers; the important thing is that they have significance to you)
  • Eocene: eon; enzyme; obscene (note that it is not necessary for the word to begin with the same letter(s) — a particularly difficult task in this instance; what’s important is whether the word will serve as a good link for you)
  • Paleocene: palace; palatial; paleolithic

To tie your chosen word to the word to be learned, you must form an association (that’s why it’s so important to choose a word that’s good for you — associations are very personal). For example, you could say:

  • Holograms are very recent (the Holocene is the most recent epoch)
  • Glaciers are plastic or My glaciers are made of plasticine (the Pleistocene was the time of the “Great Ice Age”)
  • The pliant Americas joined together or Pliable hominids arose (Hominidae began in the Pliocene, and North and South America joined up)
  • Mild weather saw Africa collide with Asia (the Miocene was warmer than the preceding epoch; during this time Africa finally connected to Eurasia)
  • Elephants become oligarchs! (during the Oligocene mammals became the dominant vertebrates)
  • Continents obscenely separate (Laurasia, the northern supercontinent, began to break up at the beginning of the Eocene; Gondwanaland, the southern supercontinent, continued its breakup)
  • Pale from the disaster, we pull ourselves together (the Paleocene marks the beginning of a new era, after the K-T boundary event (thought by many to be an asteroid impact) in which the dinosaurs and so much other life died)

Now this is not, of course, in strict accordance with the keyword method. According to this method, we should choose a word as phonetically similar to the word-to-be-learned as possible, and as concrete as possible, and then form a visual image connecting the two. While this is fine with learning a different language (the most common use for the keyword method, and the one for which it was originally designed), it is clearly very difficult to create an image for something as abstract and difficult to visualize as a period of time.

It’s also often difficult to find keywords that are both phonetically similar and concrete. We must improvise as best we may. What you need to bear in mind is that you are searching for an association that will stick in your mind, and link the unfamiliar (the information you are learning) to the familiar (information already well established in your mind).

With this in mind, look again at the suggested associations. This time, think in terms of whether you can make a picture in your mind.Holocene mnemonic image

Instead of “Holograms are very recent”, you might want to form an image of someone falling into a hole (tying the Holocene to the “Age of Humans”).


Glaciers made of plasticine might stand.Pleistocene mnemonic image






Pliocene mnemonic imageIf you can visualize very limber (perhaps in distorted postures) ape-like humans, Pliable hominids might be satisfactory, or you may need to fall back on the pliers — perhaps an image of pliers bringing North and South America together.



Miocene mnemonic imageMild weather isn’t terribly imageable; you might like to imagine milk pouring from the joint where Africa and Eurasia have collided.



Oligocene mnemonic imageOligarchs is likewise difficult, but you could visualize elephants under olive trees, eating the olives.





Eocene mnemonic imageAnd now of course, we come to the most difficult — the Eocene. Here’s a thought, for those brought up with Winnie the Pooh. If you have a clear picture of Eeyore, you could use him in this image. Perhaps Eeyore is standing on one part of the separating Laurasia (looking appropriately disconsolate).



Paleocene mnemonic image

The Paleocene might best be associated with a palace, if we’re looking for something imageable — perhaps dinosaurs sheltering in a palace as the asteroid comes down and destroys it.


You see from this that the demands of visual associations are often quite different from those of verbal associations. Both are effective. Whether you use verbal or visual associations should depend not only on your personal preference (some people find one easier, and some the other), but also on what the material best affords — that is, what is easiest, what comes more readily to mind, and also, which association will be less easily forgotten.

But mnemonics only take you so far. While very useful for learning new words, and for learning lists, they are not a good basis for developing an understanding of a subject — and unlike the situation of learning a language, a scientific topic definitely requires a more holistic approach. Mnemonics here are very much an adjunct strategy, not a complete solution. So before using mnemonics to fix specific hard-to-remember details in my brain, I would begin by organizing the information to be learned, with the goal of cutting it into meaningful chunks.


Excerpted from Mnemonics for Study


tags strategies: 

tags study: 

Homework revisited

At the same time as a group of French parents and teachers have called for a two-week boycott of homework (despite the fact that homework is officially banned in French primary schools), and just after the British government scrapped homework guidelines, a large long-running British study came out in support of homework.

tags memworks: 

tags strategies: 

International Comparisons of Achievement

Two large-scale international studies have become established to compare countries' performance in the core subjects of literacy, mathematics and science.

TIMSS: Trends in International Mathematics and Science Study

TIMSS is an international study involving 50 countries that assesses math and science achievement at four year intervals. It has been running since 1995. Students are assessed in the 4th and 8th years of school, and in their final year. The next assessment round will be in 2007.

The study uses four benchmarks (advanced, high, intermediate, low) to gather a more complete picture of trends within a country. Thus we can not only approve high performing countries like Singapore, Chinese Taipei, Korea, and Hong Kong, for having about 1/3 or more of their 8th grade students reach the advanced benchmark in mathematics, and about 2/3 to 3/4 reaching the high benchmark, but we can also note, for example, that although the Netherlands doesn't have high numbers reaching the advanced level (some 10% of 8th graders and 5% of 4th graders), it does at least do an excellent job of educating all its students, since 97% of its 8th graders and 99% of its 4th graders reach the low benchmark. It also enables us to spot trends across time — for example, in general, countries have improved their levels at the lower end, but not at the high end.


Grade 8 Advanced Benchmark

Students can organize information, make generalizations, solve non-routine problems, and draw and justify conclusions from data. They can compute percent change and apply their knowledge of numeric and algebraic concepts and relationships to solve problems. Students can solve simultaneous linear equations and model simple situations algebraically. They can apply their knowledge of measurement and geometry in complex problem situations. They can interpret data from a variety of tables and graphs, including interpolation and extrapolation.

Grade 8 High Benchmark

Students can apply their understanding and knowledge in a wide variety of relatively complex situations. They can order, relate, and compute with fractions and decimals to solve word problems, operate with negative integers, and solve multi-step word problems involving proportions with whole numbers. Students can solve simple algebraic problems including evaluating expressions, solving simultaneous linear equations, and using a formula to determine the value of a variable. Students can find areas and volumes of simple geometric shapes and use knowledge of geometric properties to solve problems. They can solve probability problems and interpret data in a variety of graphs and tables.

Grade 8 Intermediate Benchmark

Students can apply basic mathematical knowledge in straightforward situations. They can add, subtract, or multiply to solve one-step word problems involving whole numbers and decimals. They can identify representations of common fractions and relative sizes of fractions. They understand simple algebraic relationships and solve linear equations with one variable. They demonstrate understanding of properties of triangles and basic geometric concepts including symmetry and rotation. They recognize basic notions of probability. They can read and interpret graphs, tables, maps, and scales.

Grade 8 Low Benchmark

Students have some basic mathematical knowledge. The few items at this level provide some evidence that students can do basic computations with whole numbers without a calculator. They can select the two-place decimal closest to a whole number. They can multiply two-place decimal numbers by three-place decimal numbers with calculators available. They recognize some basic terminology and read information from a line on a graph.

Grade 4 Advanced Benchmark

Students can apply their understanding and knowledge in a wide variety of relatively complex situations. They demonstrate a developing understanding of fractions and decimals and the relationship between them. They can select appropriate information to solve multi-step word problems involving proportions. They can formulate or select a rule for a relationship. They show understanding of area and can use measurement concepts to solve a variety of problems. They show some understanding of rotation. They can organize, interpret, and represent data to solve problems.

Grade 4 High Benchmark

Student can apply their knowledge and understanding to solve problems. Student can solve multistep word problems involving addition, multiplication, and division. They can use their understanding of place value and simple fractions to solve problems. They can identify a number sentence that represents situations. Students show understanding of three-dimensional objects, how shapes can make other shapes, and simple transformation in a plane. They demonstrate a variety of measurement skills and can interpret and use data in tables and graphs to solve problems.

Grade 4 Intermediate Benchmark

Students can apply basic mathematical knowledge in straightforward situations. They can read, interpret, and use different representations of numbers. They can perform operations with three and four-digit numbers and decimals. They can extend simple patterns. They are familiar with a range of two-dimensional shapes and read and interpret different representations of the same data.

Grade 4 Low Benchmark

Students have some basic mathematical knowledge. Students demonstrate an understanding of whole numbers and can do simple computations with them. They demonstrate familiarity with the basic properties of triangles and rectangles. They can read information from simple bar graphs.


2003 Performance

In 2003, the international averages were:

Benchmark Grade 4 Grade 8
advanced 9% 7%
high 33% 23%
intermediate 63% 49%
low 82% 74%

There is quite a wide variation around these means. For example, Singapore is head and shoulders above everyone, scoring 44% advanced, 77% high, 93% intermediate, 99% low at grade 8, and 38% advanced, 73% high, 91% intermediate, 97% low at grade 4. The only countries that come close are also Asian: Chinese Taipei, Hong Kong, Japan, and the Republic of Korea (for Grade 8; grade 4 figures weren't available). The highest of the remaining countries at grade 8 was Hungary at 11% advanced, 41% high, 75% intermediate, 95% low, and at grade 4 England at 14% advanced, 43% high, 75% intermediate, 93% low -- a substantial difference in results! But still a vast improvement over those at the bottom of the table. Here's 2 tables roughly grouping countries, using the top performing country in each group as a benchmark:

Grade 8 advanced high intermediate low
highest performing countries (Singapore) 44% 77% 93% 99%
Singapore, Chinese Taipei, Republic of Korea, Hong Kong, Japan        
above average countries (Hungary) 11% 41% 75% 95%
Hungary, Netherlands, Belgium, Estonia, Slovak Republic, Australia, United States        
slightly below average countries (Malaysia) 6% 30% 66% 93%
Malaysia, Russian Federation, Israel, Latvia, Lithuania, England, New Zealand, Scotland        
below average countries (Romania) 4% 21% 52% 79%
Romania, Serbia, Sweden, Slovenia, Italy, Bulgaria, Armenia        
really below average countries (Cyprus) 1% 13% 45% 77%
Cyprus, Moldova, Macedonia, Jordan, Indonesia, Egypt, Norway, Lebanon, Palestinian National Authority, Iran, Chile, Philippines, Bahrain, South Africa, Tunisia, Morocco, Botswana, Saudi Arabia, Ghana        

note that the range at the bottom end is still very large; although most of the countries in the last category at least got over 50% to the low benchmark, 8 did not -- the worst only got 9% through.

Grade 4 advanced high intermediate low
highest performing countries (Singapore) 38% 73% 91% 97%
Singapore, Hong Kong, Japan, Chinese Taipei        
above average countries (England) 14% 43% 75% 93%
England, Russian Federation, Belgium, Latvia, Lithuania, Hungary        
slightly below average countries (Cyprus) 6% 30% 66% 93%
Cyprus, United States, Moldova, Italy, Netherlands, Australia, New Zealand        
below average countries (Scotland) 4% 21% 52% 79%
Scotland, Slovenia, Armenia, Norway        
really below average countries (Philippines) 1% 13% 45% 77%
Philippines, Iran, Tunisia, Morocco        

note that there are substantially fewer countries' results available at grade 4

You can find out more about international comparisons of achievements in mathematics, science and reading at the official website for TIMSS (Trends in International Mathematics and Science Study) & PIRLS (Progress in International Reading Literacy Study):

The full 2003 Mathematics Report can be downloaded at:


Grade 8 Advanced Benchmark

Students demonstrate a grasp of some complex and abstract science concepts. They can apply knowledge of the solar system and of Earth features, processes, and conditions, and apply understanding of the complexity of living organisms and how they relate to their environment.

They show understanding of electricity, thermal expansion, and sound, as well as the structure of matter and physical and chemical properties and changes. They show understanding of environmental and resource issues. Students understand some fundamentals of scientific investigation and can apply basic physical principles to solve some quantitative problems. They can provide written explanations to communicate scientific knowledge.

Grade 8 High Benchmark

Students demonstrate conceptual understanding of some science cycles, systems, and principles. They have some understanding of Earth’s processes and the solar system, biological systems, populations, reproduction and heredity, and structure and function of organisms. They show some understanding of physical and chemical changes, and the structure of matter. They solve some basic physics problems related to light, heat, electricity, and magnetism, and they demonstrate basic knowledge of major environmental issues. They demonstrate some scientific inquiry skills. They can combine information to draw conclusions; interpret information in diagrams, graphs and tables to solve problems; and provide short explanations conveying scientific knowledge and cause/effect relationships.

Grade 8 Intermediate Benchmark

Students can recognize and communicate basic scientific knowledge across a range of topics. They recognize some characteristics of the solar system, water cycle, animals, and human health. They are acquainted with some aspects of energy, force and motion, light reflection, and sound. Students demonstrate elementary knowledge of human impact on and changes in the environment. They can apply and briefly communicate knowledge, extract tabular information, extrapolate from data presented in a simple linear graph, and interpret pictorial diagrams.

Grade 8 Low Benchmark

Students recognize some basic facts from the life and physical sciences. They have some knowledge of the human body and heredity, and demonstrate familiarity with some everyday physical phenomena. Students can interpret some pictorial diagrams and apply knowledge of simple physical concepts to practical situations.

Grade 4 Advanced Benchmark

Students can apply knowledge and understanding in beginning scientific inquiry. Students demonstrate some understanding of Earth’s features and processes and the solar system. They can communicate their understanding of structure, function, and life processes in organisms and classify organisms according to major physical and behavioral features. They demonstrate some understanding of physical phenomena and properties of common materials. Students demonstrate beginning scientific inquiry knowledge and skills.

Grade 4 High Benchmark

Students can apply knowledge and understanding to explain everyday phenomena. Students demonstrate some knowledge of Earth structure and processes and the solar system and some understanding of plant structure, life processes, and human biology. They demonstrate some knowledge of physical states, common physical phenomena, and chemical changes. They provide brief descriptions and explanations of some everyday phenomena and compare, contrast, and draw conclusions.

Grade 4 Intermediate Benchmark

Students can apply basic knowledge and understanding to practical situations in the sciences. Students demonstrate knowledge of some basic facts about Earth’s features and processes and the solar system. They recognize some basic information about human biology and health and show some understanding of development and life cycles of organisms. They know some basic facts about familiar physical phenomena, states, and changes. They apply factual knowledge to practical situations, interpret pictorial diagrams, and combine information to draw conclusions.

Grade 4 Low Benchmark

Students have some elementary knowledge of the earth, life, and physical sciences. Students recognize simple facts presented in everyday language and context about Earth’s physical features, the seasons, the solar system, human biology, and the development and characteristics of animals and plants. They recognize facts about a range of familiar physical phenomena — rainbows, magnets, electricity, boiling, floating, and dissolving. They interpret labeled pictures and simple pictorial diagrams and provide short written responses to questions requiring factual information.


2003 Performance

In 2003, the international averages were:

Benchmark Grade 4 Grade 8
advanced 7% 6%
high 30% 25%
intermediate 63% 54%
low 82% 78%

There is, again, wide variation around these means. Singapore is again head and shoulders above everyone. The only countries that come close are also Asian: Chinese Taipei, Hong Kong, Japan, and the Republic of Korea (for Grade 8; grade 4 figures weren't available). The highest of the remaining countries at grade 8 was Hungary at 11% advanced, 41% high, 75% intermediate, 95% low, and at grade 4 England at 14% advanced, 43% high, 75% intermediate, 93% low — a substantial difference in results! But still a vast improvement over those at the bottom of the table. Here's 2 tables roughly grouping countries, using the top performing country in each group as a benchmark:

Grade 8 advanced high intermediate low
highest performing countries (Singapore) 33% 66% 85% 95%
Singapore, Chinese Taipei        
above average countries (Republic of Korea) 17% 57% 88% 98%
Republic of Korea, Japan, Hungary, England, Hong Kong, Estonia        
slightly above average countries (United States) 11% 41% 75% 93%
United States, Australia, Sweden, New Zealand, Slovak Republic, Netherlands, Lithuania, Slovenia, Russian Federation, Scotland        
slightly below average countries (Israel) 5% 24% 57% 85%
Israel, Latvia, Malaysia, Italy, Bulgaria, Romania, Belgium, Jordan, Norway        
below average countries (Serbia) 2% 16% 48% 79%
Serbia, Macedonia, Moldova, Armenia, Palestinian National Authority, Egypt, Iran        
really below average countries (Chile) 1% 5% 24% 56%
Chile, South Africa, Cyprus, Bahrain, Indonesia, Lebanon, Philippines, Saudi Arabia, Morocco, Tunisia, Botswana, Ghana        

again the range at the bottom end is still very large; although many of the countries in the last category at least got over 50% to the low benchmark, 7 did not -- the worst only got 13% through.

Grade 4 advanced high intermediate low
highest performing countries (Singapore) 25% 61% 86% 95%
Singapore, England, Chinese Taipei, United States, Japan        
above average countries (Russian Federation) 11% 39% 74% 93%
Russian Federation, Hungary, Australia, New Zealand, Italy, Latvia, Hong Kong        
slightly below average countries (Scotland) 5% 27% 66% 90%
Scotland, Moldova, Netherlands, Lithuania, Slovenia, Belgium        
really below average countries (Cyprus) 2% 17% 55% 86%
Cyprus, Norway, Armenia        
really below average countries (Philippines) 2% 6% 19% 34%
Philippines, Iran, Tunisia, Morocco        

note that there are substantially fewer countries' results available at grade 4

You can find out more about international comparisons of achievements in mathematics, science and reading at the official website for TIMSS (Trends in International Mathematics and Science Study) & PIRLS (Progress in International Reading Literacy Study):

The full 2003 Science Report can be downloaded at:


PIRLS is an international study of reading literacy involving 35 countries. It began in 2001, and is intended to take place every five years. It assesses performance at year 4 (around 10 years of age), although in a few cases the students are in their 3rd or 5th year of formal schooling. The PIRLS 2001 assessment was based on eight different texts of 400 to 700 words in length – four literary and four informational. Test items were designed to measure four major processes of reading comprehension:

  • Focus on and Retrieve Explicitly Stated Information.
    The student needed to recognize the relevance of the information or ideas presented in the text in relation to the information sought, but looking for specific information or ideas typically involved locating a sentence or phrase (approximately 20% of the assessment).
  • Make Straightforward Inferences.
    Based mostly on information contained in the texts, usually these types of questions required students to connect two ideas presented in adjacent sentences and fill in a “gap” in meaning. Skilled readers often make these kinds of inferences automatically, recognizing the relationship even though it is not stated in the text (approximately 40%).
  • Interpret and Integrate Ideas and Information.
    For these questions, students needed to process the text beyond the phrase or sentence level. Sometimes they were asked to make connections that were not only implicit, but needed to draw on their own knowledge and experiences (approximately 25%).
  • Examine and Evaluate Content, Language, and Textual Elements.
    These questions required students to draw on their knowledge of text genre and structure, as well as their understanding of language conventions and devices (approximately 15%).

23 of the 35 countries had average reading scores significantly above the international average of 500; the range was large, with the highest scoring country (Sweden) scoring 561, compared to the lowest scoring 327 (Belize). I've grouped them into five categories according to performance. As with the TIMSS results, the highest performing country in the group is the one whose average score is given:

  average range1
highest performing countries (Sweden) 561  
Sweden, Netherlands, England, Bulgaria, Latvia, Canada, Lithuania, Hungary, United States, Italy, Germany, Czech Republic   542-561
above average countries (New Zealand) 529  
New Zealand, Scotland, Singapore, Russian Federation, Hong Kong, France, Greece   524-529
average countries (Slovak Republic) 518  
Slovak Republic, Iceland, Romania, Israel, Slovenia, Norway   499-518
below average countries (Cyprus) 494  
Cyprus, Moldova, Turkey, Macedonia   442-494
really below average countries (Colombia) 422  
Colombia, Argentina, Iran, Kuwait, Morocco, Belize   327-422

1. the difference between the country with the lowest average and the one with the highest average

It should be noted that the range of difference between the highest 5% and lowest 5% of students in most countries was 200 to 300 points -- similar to the range in average performance across countries.

In all countries, girls had significantly higher achievement than boys. Italy had the smallest difference, with an 8-point difference compared an 11-point or greater difference for all other countries. The international average was 20 points. Countries with a difference of 25 points or more included Moldova, New Zealand, Iran, Belize and Kuwait.

For more details on countries' performance, see

Although the PIRLS, like the TIMSS, used benchmarks, the performance on the benchmarks as a whole for each country doesn't seem to be available. However, you can read about benchmark items and countries' achievements on particular ones at

The full 2001 Literacy Report can be downloaded at:

tags strategies: 

tags study: 

International Comparisons

Compulsory Education: When it starts and how long it lasts

Around the world, for the most part, compulsory schooling starts at 6, although some start at 7, and a very few at 5 or even younger. There is less consensus about how long compulsory education should last, but 9 years is the most common length, with 10 years running a close second.

Although most countries are at least consistent within their own borders, a few countries have no national policy, but instead operate at a state/provincial level. Thus, in the United States, commencement age ranges from 5-7, depending on state, and length of compulsory education varies from 9 years to 13. Similarly, in Canada, commencement age is either 6 or 7, and students are required to attend school for 10 to 13 years. Australia and Germany likewise show variability between states/Länder, but not to the same extent.

International Comparisons

  Commencement of compulsory schooling No. of years compulsory education
Australia 6 9-101
Austria 6 9
Belgium 6 12
Canada 6/71 10-131
Czech Republic 6 9
Denmark 7 9
Finland 7 9
France 6 10
Germany 6 9-10 full-time + 3 part-time1
Greece 6 9
Hungary 6 12
Iceland 6 10
Ireland 6 9
Italy 6 9
Japan 6 9
Korea 6 9
Luxembourg 6 10
Netherlands 5 12 + 1 part-time
New Zealand 62 10
Norway 6 10
Poland 7 12
Portugal 6 8
Singapore 6/7 104
Spain 6 10
Sweden 7 9
Switzerland 6 9
United Kingdom 53; 4 in Nth Ireland 11
United States 5/6/71 (most commonly 6) 9-131
  1. varies between states/provinces
  2. 6 is compulsory, but 5 is universal
  3. 5 is compulsory, but many children start at 4
  4. 6 years are compulsory; an extra 4 is universal but not compulsory

United States: Variation between States


Compulsory Education






6-16 (or completion of grade 10)











District of Columbia










































New Hampshire


New Jersey


New Mexico


New York


North Carolina


North Dakota










Rhode Island


South Carolina


South Dakota









6-16 (or completion of grade 10)





West Virginia





7-16 (or completion of grade 10)

[information taken from]

Canada: Variation between Provinces/Territories


Compulsory Education



British Columbia








Northwest Territories




New Brunswick


Nova Scotia


Prince Edward Island






[information taken from ]

School structure: Segregating by ability

This refers to the custom in some countries of having completely separate schools for students of different academic ability (generally an "academic" school versus a "vocational" or "technical" school), rather than to the practice of streaming within schools.

No country that I know of segregates children at primary level, but a number choose to do so at secondary level. Germany and Hungary do so at a younger age than most, although England, the Netherlands and Switzerland also offer the option of attending a school that caters only for academic or non-academic students (as opposed to enforced segregation). The practice of separate schools is a little more common at upper secondary level: France, Italy, Japan, Korea, Singapore and Switzerland join the ranks of those enforcing a choice, and Spain provides the option. Australia, Canada, Ireland, Wales, New Zealand, Sweden, and the United States don't have the practice of having separate schools for those of different ability, although Canada did to some extent, and some of these schools still exist.

School structure: Progression between classes

There is no strong majority in favor of either allowing students to automatically move on to the next class or requiring them to reach a certain standard. Australia, England, Ireland, Japan, Korea, New Zealand, and Wales automatically move their students on, Canada does at the primary level and sometimes does at the secondary level, and Italy generally does at the primary level but mostly doesn't at the secondary level. France, Germany, Hungary, the Netherlands, Singapore, and Switzerland require their students to reach a certain standard. And Sweden and the United States sometimes do and sometimes don't.

Textbook selection

There's an interesting range among countries as regards school textbooks. In some cases, it's entirely up to the teacher. In other cases, school boards or other official bodies determine what will be used. Some Governments supply a list of "approved" textbooks, from which texts must be chosen.

Teachers have free choice in Australia, Canada, England & Wales, Ireland, Italy, the Netherlands, New Zealand, Sweden, and some American States. Recommended lists are provided in Canada, Hungary, Spain, and Switzerland. An official list of approved texts is provided in France, Germany, Japan, Korea, Singapore, and in about half of American States.


More details comparing different countries' educational systems can be found at: [note this a pdf file]

tags strategies: 

International Curricula

A number of countries have national curricula: France, Hungary, Ireland, Italy, Japan, Korea, the Netherlands, New Zealand, Norway, Portugal, Singapore, Spain, the United Kingdom. Most States in the U.S. follow common guidelines for a core curriculum, although there is no national curriculum as such.

Around the world, there is general agreement that primary/elementary schools must cover the national language, mathematics, science, history, geography, and social studies/civics. Most countries agree that the arts, physical education, health, ethics, life skills should also be covered.

The most obvious source of variation between countries at the elementary/primary level lies in the teaching of languages other than the national language. (In those cases where there is more than one national language, it is generally the case that the student has the option of selecting their native language). Despite the fact that it is generally recognized that languages are best learned young, and that there is no evidence that learning a second language impairs understanding of the child's native language, few countries require their young children to learn a second language, or even offer them the chance to do so.

Below are details of some national curricula:

England France Iceland Japan New Zealand Spain


Compulsory education is divided into four key stages:

  • Key stage 1 covers ages 5-7 (primary school)
  • Key stage 2 covers ages 7+-11 (primary school)
  • Key stage 3 covers ages 11-14 (lower secondary)
  • Key stage 4 covers ages 14-16 (lower secondary)

Students take national tests called SATs or Key Stage tests at the end of the first 3 key stages (at 7, 11 and 14).

At primary level (Key Stages 1 and 2), students study:

  • English
  • Mathematics
  • Science
  • Design and technology
  • Information and Communication Technology (ICT)
  • History
  • Geography
  • Art and design
  • Music
  • Physical education
  • Religious education

Schools are advised to teach personal, social and health education, citizenship and at least one modern foreign language, but these are not compulsory. In the first phase of the lower secondary level (Key Stage 3), students study:

  • English
  • Maths
  • Science
  • Design and technology
  • Information and Communication Technology (ICT)
  • History
  • Geography
  • Modern foreign languages
  • Art and design
  • Music
  • Citizenship
  • Physical education
  • Religious education, Personal, social and health education (PSHE), Careers education (compulsory, but not part of the National Curriculum)

Opportunity for optional subjects begins at Key Stage 4. The compulsory subjects are:

  • English
  • Maths
  • Science
  • Information and Communication Technology (ICT)
  • Physical education
  • Citizenship
  • Religious education, careers education and sex education (compulsory, but not part of the National Curriculum)

You can read more about the English National Curriculum at:


In France, primary schools cover the first 5 years of formal education. Primary education is divided into three "cours":

  • cours préparatoire (CP)
  • cours élementaire 1 and 2 (CEl/CE2)
  • cours moyen 1 and 2 (CM1/CM2)

The first two occur in the first three years; the cours moyen cover the last two years.

Secondary schooling is divided into two successive stages, known as cycles. Collège goes from form 6 (sixième) to form 3 (troisième), covering ages 11-15. This last year at collège is the first point at which students have a choice regarding some of the subjects they wish to study. After collège, students move onto a general, technical or vocational lycée.

The 1990 primary level curriculum alloted French and social studies between 10 and 13 hours weekly; mathematics, science, and technology 6 to 10 hours; and physical and artistic education 6 to 8 hours. At collège, the national curriculum prescribes French, mathematics, a foreign language, history/geography/economics, civics, biology, plastic arts, music, technology, and physical education; physics and chemistry are added in the last two years. There is a choice between Latin, Greek, a second foreign language and extra classes in the first foreign language. In the final two years, there is a choice between different branches of technology.

Although students attend differently oriented lycée, the core subjects remain the same for all students (French, mathematics, a foreign language, history/geography/economics, civics, biology, physics, chemistry, technology, and physical education).


Compulsory school is divided into ten grades. Usually, schools either include all ten grades, or they cover grades one to seven or grades eight to ten. All compulsory schools are co-educational. Grades 1-4 (6 to 9 years) have 30 lessons a week, Grades 5-7 (10-12 years) have 35 lessons, and Grades 8-10 (13-15) have 37 lessons.

The National Curriculum specifies that over the course of these ten years, school time should be divided among the subjects in the following approximate ratios:

  • Icelandic 19%
  • Mathematics 17%
  • Natural sciences 9%
  • Social and religious studies 10%
  • Physical education 10%
  • Arts and crafts 11%
  • Modern languages 11%
  • Home economics 4%
  • ICT 6%
  • Life skills 2%

The first five are subjects which all pupils study from grade 1 through grade 9. Instruction in other subjects starts later. Both Danish and English become compulsory at later levels. In the 10th and final grade all pupils study Icelandic, mathematics, English, Danish, natural sciences, social studies, life skills and physical education, while other subjects and electives vary.

Upper secondary schools (not compulsory) come in four types:

  • grammar schools that offer four-year academic programmes of study;
  • industrial-vocational schools, which offer theoretical and practical programmes of study in skilled and some non-skilled trades;
  • comprehensive schools that provide academic programmes comparable to those of the grammar schools and vocational programmes similar to those offered by the industrial-vocational schools, as well as other specialised vocational training programmes;
  • specialised vocational schools which offer programmes of study in preparation for specialised employment.

For a more detailed discussion of the Icelandic system:  [updated link]


The Japanese education system consists of three years of pre-compulsory education (Kindergarten) (3- to 6-year-olds), six years of primary (elementary) education (6-12 years), three years of lower secondary (junior high school) education (aged 12-15) and three years of upper secondary education (senior high school) (15- to 18-year-olds). Some schools are being introduced combining lower and upper secondary education within one institution.

For elementary and secondary schools, the Ministry specifies how many hours (an "hour" is a class period of 45 minutes) per week must be spent on each subject at each year level. This is the prescription for elementary schools:

  1st year 2nd year 3rd year 4th year 5th year 6th year


306 315 280 280 210 210
Social studies     105 105 105 105


136 175 175 175 175 175
Science     105 105 105 105

Life Environment studies

102 105        


68 70 70 70 70 70

Drawing & Handicrafts

68 70 70 70 70 70
Homemaking         70 70

Physical education

102 105 105 105 105 105

Moral education

34 35 35 35 35 35
Class/school activities 34 35 35 70 70 70


850 910 980 1015 1015 1015

    Here is the prescription for lower secondary schools (note that an "hour" is now defined as a period of 50 minutes):

      1st year 2nd year 3rd year


    175 140 140
    Social studies 140 140 70-105


    105 140 140
    Science 105 105 105-140


    70 35-70 35

    Fine Arts

    70 35-70 35

    Health & Physical education

    105 105 105-140
    Industrial Arts & Homemaking 70 70 70-105
    Moral education 35 35 35
    Class/school activities 35-70 35-70 35-70
    Elective subjects 105-140 105-210 140-280


    1050 1050 1050

    For more details on the Japanese educational system, go to:

    New Zealand

    The New Zealand school system is divided into primary and secondary. Primary schooling covers the years from 5 to 12 (the compulsory starting age is 6, but it is the custom for children to begin at 5); secondary from 13-18. There are also schools known as intermediates, which cover Year 7 and 8 students (11-12 years). Some primary schools finish at Year 6, and their students go on to an intermediate; other primaries go up to Year 8, but their students may choose to go to an intermediate.

    The New Zealand curriculum for primary and secondary school students includes seven essential learning areas: Language and Languages, Mathematics, Science, Technology, Social Sciences, The Arts, Health and Physical Well-being. The New Zealand Curriculum Framework also includes eight groups of essential skills to be developed by all students across the whole curriculum: communication, numeracy, information, problem-solving, self-management, social, physical, and work and study.

    You can find a detailed description of the New Zealand curriculum at:


    Three major sections comprise the compulsory Spanish curriculum - Infant education (0 to 6 years), Primary education (6 to 12 years), and Secondary education (12 to 16 years). Fifty-five percent of the curriculum is compulsory, and the remaining forty-five percent is the responsibility of the Spanish territories.

    Primary Education (6-12 years) is organized into three two-year cycles (6-8, 8-10,10-12). The curriculum stipulates six compulsory areas of knowledge:

    • Spanish Language and Literature, and where appropriate, the Language and Literature in the respective Autonomous Community;
    • Mathematics;
    • Natural, Social and Cultural Environment (science, geography, history);
    • Artistic Education (art, music, drama);
    • Physical Education;
    • Foreign Languages (compulsory from age 8 -- the start of the second primary cycle).

    The number of school hours per cycle is also stipulated:

      1st cycle 2nd & 3rd cycles
    Spanish Language & Literature 350 275
    Mathematics 175 170
    Knowledge of the Environment 175 170
    Artistic Education 140 105
    Physical Education 140 105
    Foreign language   170
    Religion/Social-cultural activities 105 105


    1085 1100

    Lower secondary education (12-16 years) is organised into 2 two-year cycles.Each subject area is assigned a minimum number of class hours, which together must not account for over 55% of the school schedule in Autonomous Communities with a co-official language other than Spanish, or more than 65% in other areas.

      1st cycle 2nd cycle
    Spanish Language & Literature 245 240
    Foreign languages 210 240
    Mathematics 175 160
    Natural Science 140 90
    Social Studies, Geography, History 140 160
    Physical Education 70 70
    Plastic & Visual Education 35 35
    Music 35 35
    Technology 125 70
    Religion/Study Hall 105 105


    1280 1205

    You can read more about the Spanish educational system at

    More links

    To find your national or State curriculum, or investigate others, go to EDinformatics

    More details comparing different countries' educational systems including curriculum information can be found at:

    tags strategies: 

    Alternatives to mainstream education

    Montessori education

    Maria Montessori (1870-1952) was an Italian physician. After working with retarded children in a psychiatric clinic attached to the University of Rome, she applied the ideas she had developed to children in a slum district in Rome. This was the first Casa dei Bambini ("children's house"). It opened in 1907. Two years later she set out her methods and principles in a book, which was translated as The Montessori Method in 1912. With the success of her method, Dr Montessori opened more schools in Italy, in Spain, South Asia and the Netherlands. Today, schools based on her methods can be found around the world.

    The movement has been particularly successful in the United States. It would be hard to say how many Montessori schools there are (and the question of whether or not a school can be called a "Montessori" school is sometimes a difficult one, since there is no legal protection on the name, and any school may call itself "Montessori"), but Montessori Connections lists 4361 US schools and 1595 international schools in its database.

    An essential part of the Montessori approach is that of the 'prepared environment'. A Montessori preschool or primary/elementary classroom is immediately identifiable by its equipment, and by the fact that everything is scaled for the children. Children are given the opportunity to learn; teachers (known as directors/directresses, because they direct the children's learning) are facilitators of learning, not dictators.

    Although it is the essence of the approach that children learn when they are ready, the design of the environment and the program is such that Montessori students usually learn skills such as reading, writing, mathematics, at an earlier age than usual.

    >> More

    For more about Montessori:

    International Montessori Index

    the official international Montessori site.

    Montessori Connections

    good site for content - a series of articles about the Montessori method; database of Montessori schools; resources for teachers and parents; discussion boards.

    Montessori Online

    LOTS of articles here.

    American Montessori Society

    the official site of the American Montessori Society. More for teachers and parents involved in setting up a Montessori school in the US.

    Suzuki approach to music

    Shin'ichi Suzuki (1898-1998) founded the Talent Education Institute in 1950. The son of a violin maker, and a violinist himself, his teaching methods were originally used to teach violin to children, and his name and method are still predominantly associated with the violin. However, the method has since been adapted to other instruments.

    Although most people know the method by the name of the man who invented it, Suzuki himself called it Talent Education, and many of the institutions around the world bear this name. The term "Talent Education" reflects Suzuki's belief that

    "Good talent always grows where good method and good efforts are present"

    The Suzuki method has been extremely successful in teaching music to young children, and teachers can be found around the globe.

    The Suzuki approach to music has some commonalities with the Montessori approach, and many Montessori parents are also Suzuki parents (like me!). For some comments on these, go to my article on Suzuki & Montessori

    For more about Suzuki education:

    Suzuki method

    an article about the Suzuki method from the website of a Suzuki piano teacher

    Suzuki Association of the Americas

    mainly useful if you live in the American continent and wish to join the Association, but there is an article on the History of the Suzuki method which may be of interest.

    European Suzuki Association

    there are links here to individual European Suzuki associations

    And here's an amazing thing: actual archival videos of the famous violin teacher Shinichi Suzuki giving lectures and master classes:


    Waldorf or Steiner schools

    Rudolf Steiner (1861-1925) opened the first "Steiner" school in 1919, in Stuttgart, Germany. This was a school for the children of employees of the Waldorf Astoria cigarette factory, hence the name "Waldorf" schools. According to the Association of Waldorf Schools of North America, there are now over 800 Waldorf schools in over 40 countries, and over 50 full-time Waldorf teacher-training institutes. (according to the Macmillan Encyclopedia 2001 there are "over 70" schools worldwide, but this seems to me a wild underestimate, since the AWSNA lists some 136 affiliated schools in the US alone).

    Steiner was an Austrian philosopher. His career as a natural historian ended when he became involved with the theosophist movement. Eventually he broke with this movement and started his own school of "anthroposophy".

    Theosophy ("divine wisdom") borrowed heavily from eastern religions, claiming man could only know God through direct experience, through mysticism, meditation, occult practices, etc.

    Anthroposophy ("people wisdom") holds that the key to an understanding of the cosmos exists in man himself and that man's spiritual development has been held back by his too-deep focus on the material world.

    Steiner schools aim to develop the child's whole personality. Like Montessori, Steiner education is "child-centered", but where Montessori places a deep emphasis on practical skills and concrete experience, Steiner emphasizes play and creative activity. The world of the imagination is very important in Steiner education, and stories, myth and folktales are an important part of the curriculum.

    For more about Steiner education:


    there's not a lot of content, but it does have links to affiliated schools in North America, and some brief articles about Waldorf education; I recommend going straight to the site map, navigation around the site isn't overly clear

    Directory for Latin America

    for a list of Waldorf schools in Latin America

    Steiner Waldorf Schools Fellowship

    for schools in the UK and Eire

    Christchurch Rudolf Steiner School

    has more detail on the Steiner program, as well as links to international directories, and a list of NZ Steiner schools

    Steiner Schools in Australia

    for more details on Steiner education (probably the best informational content of the Steiner websites I've seen), as well as a list of Steiner schools in Australia

    An article about Waldorf education:

    "Alternative" schools

    Montessori and Steiner are the two "alternative" educational philosophies that have achieved widespread success. Montessori in particular, has almost reached mainstream status in some countries. To look at some other "alternative" schools see the Indigo Schools site, and AERO (Alternative Education Resource Organization), which has links to a number of "alternative" schools.


    Growing numbers of parents all over the world are choosing to educate their children at home.

    The National Home Education Research Institute is an American non-profit organization which exists to carry out and collect research into home education, and to educate the public about home schooling.

    About Homeschooling is a good place to start, with lots of links.

    For a perspective of why parents might choose to homeschool see this article in Father & Child

    New Zealand

    In NZ, some 5055 children (from 2854 families) were being educated at home in 1998, compared to some 206 children thirteen years earlier. The Education Review Office reviewed the quality of homeschool programs in 1998 and you can read their findings here. In general, their findings were favorable.

    tags strategies: 

    Using computers in schools

    Nowadays every school has to have computers. I don't refer to legal requirementbut to perception. Schools are judged on how many computers they have. It would be more to the point if they were judged on their computer-savvy.

    I'm a fan of computers; my computer is a vital part of my work. I believe computer literacy is as important for our children to acquire as any other "basic skill". But I'm not a fan of the wholesale introduction of computers into our schools, particularly the junior ones. How many computers a school has is not the issue - the issue is, how do they use them?

    In many cases, the answer is: poorly.

    The reasons are simple enough. Foremost, the teachers have insufficient training and experience with computers. Relatedly, computers are not yet an integrated part of the school curriculum, and every school and teacher re-invents the wheel, trying to find good software, trying to work out how to fit it into the classroom curriculum, trying to work out schedules to make sure every student gets a fair go, struggling with the lack of technical support. And of course, in many cases (perhaps most), the computers are old, with the associated problems of being more likely to have technical problems, being slow, limited in memory, incompatible with current software, and so on.

    The most important problems schools have with computers:

    • lack of financial resources (to buy enough computers, up-to-date computers, enough printers and other peripherals, licenses for good software, technical support)
    • the inability of teachers to know how to use the computers effectively
    • difficulty in integrating computers into the school / classroom curriculum (problems of use, of scheduling, of time)

    Using computers effectively is much more than simply being able to type an essay or produce a graph. Parents and educators who deplore the obsession with computers in schools see computers as eroding children's basic skills and knowledge, because they only see computers being used as copy-and-paste and making-it-pretty devices. But computers have potential far beyond that.

    Computers can be used to help:

    • extend the scope of searches
    • retrieve precisely targeted data with greater speed and accuracy
    • increase the amount of data held ready for use
    • sift relevant data from irrelevant
    • turn data into information

    The true value of a computer isn't seen until the user can use it not only as a presentation tool (for making work attractive), and as a productivity tool (for producing work more quickly, effectively, thoroughly), but also as a cognitive tool.

    Using computers as cognitive tools

    A cognitive tool helps you think.

    Many people thought computers would revolutionize education by providing individual instruction in the form of tutorials. In particular, as a means of drilling students. Drilling can be helpful to overlearn a skill to achieve automaticity, but it doesn’t help transfer to meaningful problems. That is, you can learn a skill, you can rote-learn facts, but drilling doesn't help meaningful learning - it doesn't teach understanding.

    Although computer tutorials have become somewhat more sophisticated, they still only present a single interpretation of the world - they don’t allow students to find their own meaning. They don't teach students to reflect on and analyze their own performance.

    “I do not believe that students learn from computers or teachers — which has been a traditional assumption of most schooling. Rather, students learn from thinking in meaningful ways. Thinking is engaged by activities, which can be fostered by computers or teachers.” (Jonassen, p4)

    So, the computer itself isn't the issue - the issue, as always, is what you do with it. For example, when the Web is simply used as a source of material that can be downloaded and pasted without thought, then no, it is not of value. But when the learner searches the Web, evaluates the information, finds the gold in the dross, uses that to construct a knowledge base, to develop meaning, then yes, it is a valuable resource.

    Computers can support meaningful learning by

    • reducing time spent on mechanical tasks such as rewriting, producing graphs, etc
    • helping find information
    • helping organize information
    • making it easier to share information and ideas with others

    Related articles/sites on the Web:

    A recent news articles on the subject of compulsory laptops at a Seattle school

    New York Times articles about computers in education: Technology critic takes on computers in schools ; Making the most of the Internet's potential for education

    An Atlantic monthly column: The computer delusion

    A Boston Globe column about computers for young children: Computers, software can harm emotional, social development


    Jonassen, David H. 2000. Computers as Mindtools for schools: Engaging critical thinking. (2nd ed.) NJ: Prentice-Hall

    tags strategies: 

    The Montessori method

    Many parents enrol their children in Montessori preschools because they are an "educational" way of getting childminding - if you're going to put your child in a creche, why not put them in a preschool instead - or because they want to give their child a "head start" on education. Quality preschool education is a rarity and Montessori are certainly leaders in the field.

    My own children have been involved with Montessori since they were three.Like many parents, I came to Montessori education more by accident than design, and my belief in the system has grown over the years. When a Montessori primary (elementary) class opened in time for my older child, I was very pleased.

    It is probably fair to say that parents send their children to a Montessori preschool because they provide a quality preschool education, but they send their children to Montessori schools because they have become converts to the Montessori approach and/or because they have deep dissatisfactions with the traditional education system.

    I admit freely that both are true of me. Would I have been so keen on sending my son to a Montessori primary if I had been happier at school myself (rather than bored out of my tree)? But my sons' involvement with Montessori has only deepened my commitment and appreciation of its approach.

    It is interesting that Montessori education seems particularly attractive to parents of sons. The preponderance of boys in my sons' classes may well be an anomaly, but I observe that those children who come to us at an older age, having had problems in mainstream (traditional) schools, are invariably boys. It is a truism today that the traditional education system favors girls. The Montessori environment and program doesn't penalize boys for their difficulty in sitting still; their later maturing; their need to touch and manipulate objects. The Montessori program is based around the individual. Thus, for example, the student determines when they'll do maths and for how long. This doesn't mean the child can choose never to do maths, merely that the child has control within the limits set by the teacher.

    One of the most fundamental, and misunderstood, tenet of the Montessori approach is encapsulated in the phrase "Follow the child".

    "Follow the child" does not mean let the child do what he wants. It is simply an acknowledgment that the child has her own pattern - that we need to take into account where the child is at, rather than impose our idea of what the child should learn now. Montessori saw the child's development as passing through four developmental phases, with a pattern of intense growth reaching a peak and then declining, within each phase.

    Each of these developmental phases is marked by:

    • a specific developmental goal
    • a readily identifiable direction to reach that goal
    • specific sensitivities that facilitate reaching that goal

    This scenario is the basis for the Montessori structure of 3-6, 6-9, 9-12 classes. The age-bands reflect the developmental phases, and the program and environment provided for that phase reflects the sensitivities characteristic of that phase.

    The color of these triangles reflects the similarity between, for example, the developmental phases at 0-6 and 12-18, a similarity that has been remarked on by many parents and teachers of adolescents.

    Maria Montessori was ahead of her time in recognizing that babies were active learners, and it is also instructive to note that she saw development continuing to age 24. However, for the most part, Montessori education has concentrated on the periods 3-6 (preschool) and 6-12, with particular emphasis on the preschool years. This emphasis no doubt reflects the much greater void that existed in preschool education.

    It is also partly an historical artifact - when Montessori decided (on the basis of her amazing success with so-called "uneducable" children) to try her methods on normal children, she had no opportunity to work with school-age children, as they were already in school. However, an opportunity arose to have custody of children below school age in a reclaimed public-housing project in Rome. Hence, quite by accident, Montessori's first successes were with preschool children. The success of her methods was of course, also much more obvious with this group of children, since few children below the age of six received any sort of education.

    You can now read Maria Montessori's 1909 book online. There is an illustrated edition available at


    Lillard, Paula Polk. 1996. Montessori Today: A comprehensive approach to education from birth to adulthood. NY: Schocken Books. Toronto: Random House.

    tags strategies: 

    Suzuki & Montessori

    Some comments on the commonalities between the Suzuki approach to learning music and the Montessori approach to education.

    My sons have both been in Montessori since they were three (they are now 8 and nearly 11, respectively). My elder son started learning the violin from a Suzuki teacher when he was around five, and now learns the piano (again, from a Suzuki teacher). My younger son has been learning the violin for the last two years. Over the years I have been somewhat intrigued by the number of parents who, like me, are both Montessori and Suzuki parents.

    It is perhaps indicative that we talk about Montessori parents, and Suzuki parents. It is our children who are in these systems, why do we include the parents? I imagine it’s because both philosophies require the parent to be involved, to understand what’s involved in the approach, and do their part.

    Why do these approaches go hand-in-hand? Well, they share a number of similarities.

    Both Suzuki and Montessori respect the child, and feel that learning must be approached from where the child is, not where we think they should be.

    Both believe in leading by example — not by telling (haranguing) the child to do what the adult thinks best, but by providing an example of the behavior the adult wants the child to copy.

    Both provide the child with an orderliness that permits the child to learn. In the Montessori classroom this is expressed in the orderliness of the materials — everything has a place, every task has a sequence. In Suzuki, this is expressed through the set order of music pieces expressly designed to take the student step by step through the techniques necessary to learn the relevant skills.

    Both philosophies stress the importance of providing the right environment to nurture the child’s developing character and self-image. Both feel that individuals learn at their own pace, not according to some standard drawn up by educators. In both methods, age does not determine what work the child is doing — they do what is appropriate for their skill level, not their age.

    Both Montessori and Suzuki appreciate that repetition is the key to mastery.

    Both philosophies believe that education is about bringing out potential, rather than “instructing”. The adult is a director rather than a dictator.


    Thompson, Linda K.: Montessori and Suzuki. The NAMTA Journal, v 15 (2).

    tags strategies: 


    Subscribe to classroom learning