semantic memory

Research from the National Reading Panel

  • A meta-analysis of the research on phonemic awareness training showed quite clearly the benefits of this technique, as a component of a successful reading program.
  • Similarly, the detailed analysis of many studies involving phonics instruction revealed that systematic phonics instruction produces significant benefits for students in kindergarten through 6th grade and for children having difficulty learning to read.
  • However, systematic phonics instruction requires phonemic awareness training to be effective, and, like phonemic awareness, must be only one component of a reading program — it is not sufficient in itself.
  • A review of the research also found that guided repeated oral reading procedures had a significant and positive impact on word recognition, fluency, and comprehension across a range of grade levels.
  • There is still insufficient research evidence obtained from studies of high methodological quality to support the idea that having students engage in independent silent reading with minimal guidance or feedback improves reading achievement, including fluency.
  • The available data do suggest that independent silent reading is not an effective practice when used as the only type of reading instruction to develop fluency and other reading skills, particularly with students who have not yet developed critical alphabetic and word reading skills.
  • The research done in vocabulary instruction and text comprehension was insufficient to enable the Panel to carry out the type of meta-analysis done for phonemic awareness and phonics instruction. The Panel did however make various recommendations regarding specific strategies on the basis of their analysis of the research.

Introduction

In 1997, the U.S. Congress asked the Director of the National Institute of Child Health and Human Development (NICHD) at the National Institutes of Health, in consultation with the Secretary of Education, to convene a national panel to assess the effectiveness of different approaches used to teach children to read. For over two years, the National Reading Panel reviewed research-based knowledge on reading instruction and held open panel meetings in Washington, DC, and regional meetings across the United States. On April 13, 2000, the NRP concluded its work and submitted "The Report of the National Reading Panel: Teaching Children to Read."

Below are edited excerpts from the report, regarding their findings on a variety of reading instruction strategies.

Phonemic Awareness

Phonemes are the smallest units composing spoken language. For example, the words “go” and “she” each consist of two sounds or phonemes. Instruction in phonemic awareness (PA) involves teaching children to focus on and manipulate phonemes in spoken syllables and words. PA instruction should not be confused with phonics instruction (see below), or with auditory discrimination, which refers to the ability to recognize whether two spoken words are the same or different.

An extensive and rigorous analysis of studies involving PA training found that teaching children to manipulate phonemes in words was highly effective under a variety of teaching conditions with a variety of learners across a range of grade and age levels and that teaching phonemic awareness to children significantly improves their reading more than instruction that lacks any attention to PA.

The evidence seems very clear that PA training caused improvement in students’ phonemic awareness, reading, and spelling. PA instruction also helped normally achieving children learn to spell, but was not effective for improving spelling in disabled readers.

The characteristics of PA training found to be most effective in enhancing PA, reading, and spelling skills included:

  • explicitly and systematically teaching children to manipulate phonemes with letters,
  • focusing the instruction on one or two types of phoneme manipulations rather than multiple types,
  • teaching children in small groups.

It is important to note that PA instruction is a component of a successful reading program, not a complete reading program.

It is also important to note that there are many ways to teach PA effectively, and that the motivation of both students and their teachers is a critical ingredient of success.

Phonics instruction

Phonics instruction is a way of teaching reading that stresses the acquisition of letter-sound correspondences and their use in reading and spelling. The primary focus of phonics instruction is to help beginning readers understand how letters are linked to sounds (phonemes) to form letter-sound correspondences and spelling patterns and to help them learn how to apply this knowledge in their reading. Phonics instruction may be provided systematically or incidentally. A variety of systematic approaches are listed below. In incidental phonics instruction, the teacher simply highlights particular elements opportunistically when they appear in text.

The detailed analysis of studies involving phonics instruction revealed that systematic phonics instruction produces significant benefits for students in kindergarten through 6th grade and for children having difficulty learning to read.

The ability to read and spell words was enhanced in kindergartners who received systematic beginning phonics instruction. First graders who were taught phonics systematically were better able to decode and spell, and they showed significant improvement in their ability to comprehend text. Older children receiving phonics instruction were better able to decode and spell words and to read text orally, but their comprehension of text was not significantly improved.

Systematic synthetic phonics instruction also had a positive and significant effect on disabled readers’ reading skills. Additionally, systematic synthetic phonics instruction was significantly more effective in improving low socioeconomic status children’s alphabetic knowledge and word reading skills than instructional approaches that were less focused on these initial reading skills.

Across all grade levels, systematic phonics instruction improved the ability of good readers to spell. The impact was strongest for kindergartners and decreased in later grades. For poor readers, the impact of phonics instruction on spelling was small.

Although conventional wisdom has suggested that kindergarten students might not be ready for phonics instruction, this assumption was not supported by the data. The effects of systematic early phonics instruction were significant and substantial in kindergarten and the 1st grade, indicating that systematic phonics programs should be implemented at those age and grade levels.

While the findings provide converging evidence that explicit, systematic phonics instruction is a valuable and essential part of a successful classroom reading program, there is a need to be cautious in giving a blanket endorsement of all kinds of phonics instruction. In particular, to be able to make use of letter-sound information, children need phonemic awareness. Programs that focus too much on the teaching of letter-sound relations and not enough on putting them to use are unlikely to be very effective. Systematic phonics instruction is only one component—albeit a necessary component—of a total reading program; systematic phonics instruction should be integrated with other reading instruction in phonemic awareness, fluency, and comprehension strategies to create a complete reading program. Unfortunately, there is as yet insufficient research to tell us exactly how phonics instruction can be most effectively incorporated into a successful reading program.

Phonics Instructional Approaches

Analogy Phonics —Teaching students unfamiliar words by analogy to known words (e.g., recognizing that the rime segment of an unfamiliar word is identical to that of a familiar word, and then blending the known rime with the new word onset, such as reading brick by recognizing that -ick is contained in the known word kick, or reading stump by analogy to jump).

Analytic Phonics—Teaching students to analyze letter-sound relations in previously learned words to avoid pronouncing sounds in isolation.

Embedded Phonics—Teaching students phonics skills by embedding phonics instruction in text reading, a more implicit approach that relies to some extent on incidental learning.

Phonics through Spelling—Teaching students to segment words into phonemes and to select letters for those phonemes (i.e., teaching students to spell words phonemically).

Synthetic Phonics —Teaching students explicitly to convert letters into sounds (phonemes) and then blend the sounds to form recognizable words.

Fluency

Fluency is one of several critical factors necessary for reading comprehension. Despite its importance as a component of skilled reading, fluency is often neglected in the classroom. Reading practice is generally recognized as an important contributor to fluency. Two instructional approaches, each of which has several variations, have typically been used to teach reading fluency:

  • guided repeated oral reading - encourages students to read passages orally with systematic and explicit guidance and feedback from the teacher
  • independent silent reading - encourages students to read silently on their own, inside and outside the classroom, with minimal guidance or feedback

On the basis of a detailed analysis of the available research that met NRP methodological criteria, the Panel concluded that guided repeated oral reading procedures that included guidance from teachers, peers, or parents had a significant and positive impact on word recognition, fluency, and comprehension across a range of grade levels. These studies were conducted in a variety of classrooms in both regular and special education settings with teachers using widely available instructional materials.

These results apply to all students—good readers as well as those experiencing reading difficulties. Nevertheless, there were important gaps in the research. In particular, the Panel could find no multiyear studies providing information on the relationship between guided oral reading and the emergence of fluency.

Independent Silent Reading

There has been widespread agreement that encouraging students to engage in wide, independent, silent reading increases reading achievement. Literally hundreds of correlational studies find that the best readers read the most and that poor readers read the least. These correlational studies suggest that the more that children read, the better their fluency, vocabulary, and comprehension. However, these findings are correlational in nature, and correlation does not imply causation.

Unfortunately only 14 of the studies that examined the effect of independent silent reading on reading achievement could meet the NRP research review methodology criteria, and these studies varied widely in their methodological quality and the reading outcome variables measured. Thus, a meta-analysis could not be conducted. Rather, the 14 studies were examined individually and in detail to identify converging trends and findings in the data.

With regard to the efficacy of having students engage in independent silent reading with minimal guidance or feedback, the Panel was unable to find a positive relationship between programs and instruction that encourage large amounts of independent reading and improvements in reading achievement, including fluency.

In other words, even though encouraging students to read more is intuitively appealing, there is still not sufficient research evidence obtained from studies of high methodological quality to support the idea that such efforts reliably increase how much students read or that such programs result in improved reading skills.

The available data do suggest that independent silent reading is not an effective practice when used as the only type of reading instruction to develop fluency and other reading skills, particularly with students who have not yet developed critical alphabetic and word reading skills.

Comprehension

Vocabulary Instruction

The importance of vocabulary knowledge has long been recognized in the development of reading skills. For various reasons, a formal meta-analysis could not be conducted. Instead the vocabulary instruction database was reviewed for trends across studies. Fifty studies dating from 1979 to the present were reviewed in detail. There were 21 different methods represented in these studies.

The studies reviewed suggest that vocabulary instruction does lead to gains in comprehension, but that methods must be appropriate to the age and ability of the reader.

The following approaches appeared to be helpful:

  • learning words before reading a text
  • techniques such as task restructuring and repeated exposure (including having the student encounter words in various contexts)
  • substituting easy words for more difficult words can assist low-achieving students.
  • use of computers in vocabulary instruction was found to be more effective than some traditional methods in a few studies
  • vocabulary also can be learned incidentally in the context of storybook reading or in listening to others

The Panel concluded that:

  • vocabulary should be taught both directly and indirectly
  • repetition and multiple exposures to vocabulary items are important
  • learning in rich contexts, incidental learning, and use of computer technology all enhance the acquisition of vocabulary
  • direct instruction should include task restructuring as necessary and should actively engage the student
  • dependence on a single vocabulary instruction method will not result in optimal learning.

They also concluded that, while much is known about the importance of vocabulary to success in reading, there is little research on the best methods or combinations of methods of vocabulary instruction and the measurement of vocabulary growth and its relation to instruction methods.

Text Comprehension Instruction

Comprehension is defined as “intentional thinking during which meaning is constructed through interactions between text and reader” (Harris & Hodges, 1995). Thus, readers derive meaning from text when they engage in intentional, problem solving thinking processes. The data suggest that text comprehension is enhanced when readers actively relate the ideas represented in print to their own knowledge and experiences and construct mental representations in memory.

In its review, the Panel identified 16 categories of text comprehension instruction of which 7 appear to have a solid scientific basis for concluding that these types of instruction improve comprehension in non-impaired readers. Some of these types of instruction are helpful when used alone, but many are more effective when used as part of a multiple-strategy method. The types of instruction are:

  • Comprehension monitoring, where readers learn how to be aware of their understanding of the material;
  • Cooperative learning, where students learn reading strategies together;
  • Use of graphic and semantic organizers (including story maps), where readers make graphic representations of the material to assist comprehension;
  • Question answering, where readers answer questions posed by the teacher and receive immediate feedback;
  • Question generation, where readers ask themselves questions about various aspects of the story;
  • Story structure, where students are taught to use the structure of the story as a means of helping them recall story content in order to answer questions about what they have read; and
  • Summarization, where readers are taught to integrate ideas and generalize from the text information.

In general, the evidence suggests that teaching a combination of reading comprehension techniques is the most effective. When students use them appropriately, they assist in recall, question answering, question generation, and summarization of texts. When used in combination, these techniques can improve results in standardized comprehension tests.

Nevertheless, some questions remain unanswered. More information is needed on ways to teach teachers how to use such proven comprehension strategies. The literature also suggests that teaching comprehension in the context of specific academic areas—for example, social studies—can be effective. If this is true of other subject areas, then it might be efficient to teach comprehension as a skill in content areas.

Questions remain as to which strategies are most effective for which age groups. More research is necessary to determine whether the techniques apply to all types of text genres, including narrative and expository texts, and whether the level of difficulty of the texts has an impact on the effectiveness of the strategies. Finally, it is critically important to know what teacher characteristics influence successful instruction of reading comprehension.

References: 

National Institute of Child Health and Human Development. (2000). Report of the National Reading Panel. Teaching children to read: an evidence-based assessment of the scientific research literature on reading and its implications for reading instruction. Retrieved September 2, 2004 from http://www.nichd.nih.gov/publications/nrp/smallbook.htm

tags study: 

tags memworks: 

Subliminal & sleep learning

Subliminal learning achieved notoriety back in 1957, when James Vicary claimed moviegoers could be induced to buy popcorn and Coca-Cola through the use of messages that flashed on the screen too quickly to be seen. The claim was later shown to be false, but though the idea that people can be brainwashed by the use of such techniques has been disproven (there was quite a bit of hysteria about the notion at the time), that doesn’t mean the idea of subliminal learning is crazy.

Ten years ago, researchers demonstrated that subliminal messages do indeed affect human cognition — and showed the limits of that influence [1]. The study demonstrated that, to have an effect on a person’s decision, the subliminal message had to be received very very soon before that decision (a tenth of a second or less), and the person had to be forced to make the decision very quickly. Moreover, there was no memory trace detectable, indicating no permanent record was stored in memory.

But even such brief, low-level learning seems to require some level of attention. A study [2] found that subliminal learning doesn’t occur if the subliminal stimuli are presented during what has been termed an "attentional blink" You may recall when I’ve discussed multi-tasking, I’ve said that we can’t do two things at the same time — that tasks have to "queue" for attention. When a bottleneck occurs in the system, this attentional "blink" occurs.

But low-level sensory processing, which is an automatic process, isn’t affected by the attentional blink, so the finding that subliminal learning is affected by the blink indicates that subliminal stimuli require some high-level cognitive processing.

This finding has been confirmed by other studies. One such study [3] also has implications for reading. Participants in the study were shown either words or pronounceable nonwords and asked to perform either a lexical task (to identify whether the word they saw was a real word or a nonsense word) or a pronunciation task on the words. Unbeknownst to the participants however, they had been first presented with a subliminal word that either matched or didn't match the target word. People performed the tasks faster when the subliminal word was identical to the target word. However (and this is the interesting bit), the researchers then applied a magnetic pulse (transcranial magnetic stimulation) to the key brain regions of the brain before presenting the subliminal information. By applying TMS to one brain area or the other, they found they could selectively disrupt the subliminal effect for either the lexical or pronunciation task. In other words, it seems that, even when the stimulus is subliminal, the brain takes into account the conscious task instructions. Our expectations shape our processing of subliminal stimuli.

Another study [4] suggests that motivation is important, and also, perhaps, that some stimuli are more suitable than others. The study found that thirsty people could be encouraged to drink more, and also pay more for their drink, after being exposed to subliminal smiling faces. Subliminal frowning faces had the opposite effect. However, how much, and whether, the faces had an effect on drinking, depended on the person’s thirst. Those who weren’t thirsty weren’t affected at all. Smiles and frowns are of course stimuli to which we are very responsive.

So clearly, although it is possible to be unconsciously affected by stimuli that can’t be consciously detected, the effect is both small and fleeting. However, that doesn’t mean more long-term effects can’t be experienced as a result of information we’re not conscious of.

Psychologists make a distinction between explicit memory and implicit memory. Explicit memory is what you’re using when you remember or recognize something — it’s what we tend to think of as "memory". Implicit memory, on the other hand, is a concept that reflects the fact that sometimes people act in ways that are clearly affected by earlier experiences they have had, even though they are not consciously recalling such experiences.

Another study [5] that used erotic images (because, like smiling and frowning faces, these are particularly potent stimuli, making it easy to see a response) found that when your eyes are presented with erotic images in a way that keeps you from becoming aware of them, your brain can still detect them — evidenced by the way people respond to the images according to their gender and sexual orientation.

The study is more evidence that the brain processes more visual information than we are conscious of — which is an important part in the process of determining what we’ll pay attention to. But the researchers believe that the information is probably destroyed at an early stage of processing — in other words, as with subliminal stimuli, there is probably no permanent record of the experience.

Which leads me to sleep learning. This was a big idea when I was young, in the science fiction I read — the idea that you could easily master new languages by being instructed while you were asleep.

Well, the question of whether learning can take place during sleep (and I’m not talking about the consolidation of learning that’s occurred earlier) is one that has been looked at in animal studies. It has been shown that simple forms of learning are indeed possible during sleep. However, the way in which associations are formed is clearly altered even for simple learning, and complex forms of learning do not appear to be possible.[6]

As far as humans are concerned, the evidence is that any learning during sleep must occur during the lightest stage of sleep, when you still have some awareness of the world around you, and that what you are learning must be already familiar (presented previously while you were awake and paying attention) and not requiring any understanding.

All the evidence suggests that, although information can be processed without conscious awareness, there are severe limitations on that information. If you want to "know" something in the proper meaning of the word — be able to recall it, think about it — you need to actively engage with the information. No free lunches, I’m afraid!

But that doesn’t mean unconscious influences don’t have important implications for learning and memory. A paper provided online in the Scientific American Mind Matters blog describes how a single, 15-minute intervention erased almost half the racial achievement gap between African American and white students. And this is entirely consistent with a number of studies showing how our cognitive performance is affected by what we think of ourselves (which is affected by what others think of us).

This article first appeared in the Memory Key Newsletter for March 2007

References: 

  1. Greenwald, A.G., Draine, S.C. & Abrams, R.L. 1996. Three Cognitive Markers of Unconscious Semantic Activation. Science, 273 (5282), 1699-1702.
  2. Seitz, A. et al. 2005. Requirement for High Level Processing in Subliminal Learning. Current Biology, 15, R753-R755, September 20, 2005.
  3. Nakamura, K. et al. 2006. Task-Guided Selection of the Dual Neural Pathways for Reading. Neuron, 52, 557-564.
  4. Winkielman, P. 2005. Paper presented at the American Psychological Society annual convention in Los Angeles, May 26-29. Press release
  5. Jiang, Y. et al. 2006. A gender- and sexual orientation-dependent spatial attentional effect of invisible images. PNAS, 103 (45), 17048-17052.
  6. Coenen, A.M. & Drinkenburg, W.H. 2002. Animal models for information processing during sleep. International Journal of Psychophysiology, 46(3), 163-175.

tags lifestyle: 

tags strategies: 

tags memworks: 

Word-finding problems

  • It is normal for word-finding problems to increase as we age
  • It is normal for us to be slower in processing information as we age
  • Difficulty in retrieving words does not mean the words are lost; there is no evidence that we lose vocabulary in normal aging
  • There is little evidence for any change in semantic structure (the organization of words in memory) with age
  • Older adults probably have more trouble dealing with large amounts of information
  • Older adults may develop different strategies as they age, probably to accommodate their decline in processing speed and processing capacity

What do we mean by word-finding problems?

Here are some examples:

  • increasing use of circumlocutions rather than specific terms (e.g., "I wonder where the thing that goes here is")
  • use of empty phrases, indefinite terms, and pronouns without antecedents (i.e., referring to something or someone as "it" or "him / her" without first identifying them by name)
  • increased frequency of pauses

These problems are all characteristic of Alzheimer's, but also, to a much lesser extent, of normal aging.

Verbal fluency declines with age

Verbal fluency is measured by how many words fitting a specific criteria you can generate in a fixed time (for example, how many types of fruit you can list in a minute).

Verbal fluency often (but not always) declines as we age. This may be partly because older adults are slower to access information.

Tip-of-the-tongue experiences increase with age

There is no evidence that normal older adults actually lose the meanings of words they know.

Older adults do however have more word-finding problems than younger adults. In particular, as we get older we tend to experience more experiences when the word we are searching for is "on the tip of my tongue" [1]. (For more detail about this, see the research report at Burke 1991)

Picture-naming errors also increase, though not perhaps until the eighties [2].

Some studies have found a decline in older adults’ ability to produce words when given their definitions, but others haven’t. This may relate to strategy differences.

No structural changes to memory in normal aging

So, older adults do show some of the same type of word-finding problems as Alzheimers patients do, but to a considerably smaller degree. There is little evidence however that this decline is due to any structural changes in semantic memory with age. Normal younger and older adults give the same sort of responses. (Alzheimers patients on the other hand, become more eccentric in their word associations).

Older adults may tend to use different memory strategies than younger adults

While older adults are slower to make category judgments (e.g., "Is a tomato a fruit? True or false"), they do not give responses different from those of younger adults, supporting the view that semantic organization hasn't changed. However, there is some evidence that young and old differ in the way they judge similarity (older adults seem to rely more on distinctive features; younger adults use both common and distinctive features). This may however be due to strategy differences.

There is no evidence for any decline in prose comprehension with age. However, when there is a large load on memory (when the text is complex, for example), older adults find retrieving general knowledge more difficult.

It appears that encoding of new information might become less context-specific with age, but this may only relate to particular types of context information. It might only be that older adults are less inclined to attend to such (largely irrelevant) details as: whether something was printed in upper or lower case; the sex of a speaker; the color in which a word is printed. The temporal and spatial contexts are also likely to be less important. In other words, older adults seem to encode less information about the source of new information (the circumstances in which the information was acquired) than younger adults.

References: 

  • Light, Leah L. The organization of memory in old age. In Craik, Fergus I. M. & Salthouse, Timothy A. (eds). 1992. The Handbook of Aging and Cognition. Hillsdale, NJ: LEA. Pp111-165.
  1. Burke DM, MacKay DG, Worthley JS, & Wade E. 1991. On the tip of the tongue: What causes word finding failures in young and older adults? Journal of Memory and Language, 30, 542-79.
    Cohen G & Faulkner D. 1986. Memory for proper names: Age differences in retrieval. British Journal of Developmental Psychology, 4, 187-97.
  2. Albert MS, Heller HS, & Milberg W. 1988. Changes in naming ability with age. Psychology and Aging, 3, 173-8.
    Borod JC, Goodglass H, & Kaplan E. 1980. Normative data on the Boston Diagnostic Aphasia Examination, Parietal Lobe Battery, and the Boston Naming Test. Journal of Clinical Neuropsychology, 2, 209-15.
    Van Gorp W, Satz P, Kiersch ME & Henry R. 1986. Normative data on the Boston Naming Test for a group of normal older adults. Journal of Clinical and Experimental Neuropsychology, 8, 702-5.
    Mitchell DW. 1989. How many memory systems? Evidence from aging. Journal of Experimental Psychology: Learning, Memory & Cognition, 15, 31-49. (no age effect found).

tags problems: 

tags memworks: 

Tip-of-the-tongue experiences

  • In a tip-of-the-tongue experience, you typically know quite a lot of information about the target word without being able to remember the word itself.
  • Remembering often occurs sometime later, when you have stopped searching for the word.
  • Often a similar sounding word seems to block your recall, but these probably don't cause your difficulty in remembering.
  • TOTs probably occur because of there is a weak connection between the meaning and the sound of a word.
  • Connections are weak when they haven't been used frequently or recently
  • Aging may also weaken connections.
  • TOTs do occur more frequently as we age.
  • In general, this increase in TOTs with age is seen in poorer recall of names (proper names and names of things). Abstract words do not become harder to recall with age.
  • Keeping your experience of language diverse (e.g., playing scrabble, doing crosswords) may help reduce TOTs.

What is a tip-of-the-tongue experience?

The tip-of-the-tongue experience (TOT) is characterized by being able to retrieve quite a lot of information about the target word without being able to retrieve the word itself. You know the meaning of the word. You may know how many syllables the word has, or its initial sound or letter. But you can’t retrieve it all. The experience is coupled with a strong feeling (this is the frustrating part) that you know the word, and that it is hovering on the edges of your thought.

When you do eventually remember it, the experience is often as erratic and abrupt as the initial failure — typically it pops up sometime later, when you have stopped searching for it.

Another characteristic of TOTs is that a similar sounding word keeps blocking the way. There you are, trying to remember Velcro, and all you can think of is helmet. You feel strongly that if you could just stop thinking of helmet, then you’d find the word you’re looking for, but helmet won’t budge.

What causes TOTs?

It has been thought that these interfering words cause the TOTs, but some researchers now believe they’re a consequence rather than a cause. Because you have part of the sounds of the word you’re searching for, your hard-working brain, searching for words that have those sounds, keeps coming up with the same, wrong, words.

A recent study by Dr Lori James of the University of California and Dr Deborah Burke of Pomona College suggests a different cause.

How are words held in memory? A lot of emphasis has been placed on the importance of semantic information — the meaning of words. But it may be that the sound of a word is as important as its meaning.

Words contain several types of information, including:

  • semantic information (meaning),
  • lexical information (letters), and
  • phonological information (sound).

These types of information are held in separate parts of memory. They are connected of course, so that when, for example, you read Velcro, the letter information triggers the connected sound information and the connected meaning information, telling you how to pronounce the word and what it means.

When you try to think of a word, as opposed to being given it, you generally start with the meaning (“that sticky stuff that has fuzz on one side and tiny hooks on the other”). If the connection between that meaning and the sound information is not strong enough, the sound information won’t be activated strongly enough to allow you to retrieve all of it.

Drs James and Burke think that TOTs occur because of weak connections between the meaning and the sound of a word.

Connections are strengthened when they’re used a lot. They are also stronger when they’ve just been used. If you haven’t used a connection for a while, it will weaken. It may also be that aging weakens connections.

This may explain why the errant word suddenly “pops up”. It may be that you have experienced a similar sound to the target word.

Are TOTs worth worrying about?

TOTs are ranked by older adults as their most annoying memory failure. They do happen more often as you age, and this increase starts as early as the mid-thirties.

While everyone has TOTs, there are some differences in the TOTs experienced by older adults. For example, the most common type of word involved in TOTs at all ages is proper names. But while forgetting proper names and object names becomes more common as we get older, abstract words are actually forgotten less.

The length of time before the missing word is recalled also increases with age. This may be because older people are less likely to actively pursue a missing word, and more inclined to simply relax and think about something else. Older adults are also more likely than younger adults to go completely blank (unable to recall any part of the word’s sound or letters).

Alzheimer’s disease is characterized by word failures. However, normal TOTs tend to involve rarely used words. In Alzheimer’s, people lose very high frequency words, such as fork and spoon.

Why do TOTs increase as we age? Part of the reason may be that most of us experience fewer new and rare words as we get older and stuck in our own particular ruts. It seems that we need a lot of activation of the sound connections to keep them alive. The more we limit our experience to the tried and true, the less opportunity to keep these rarer connections active.

Dr James suggests: "People should keep using language, keep reading, keep doing crosswords. The more you use your language and encounter new words, the better your chances are going to be of maintaining those words, both in comprehension and in production, as you get older."

References: 

  • Burke, D.M., MacKay, D.G., Worthley, J.S. & Wade, E. (1991). On the tip of the tongue: What causes word finding failures in young and older adults. Journal of Memory and Language, 30, 542-579.
  • James, L.E. & Burke, D.M. 2001. Phonological Priming Effects on Word Retrieval and Tip-of-the-Tongue Experiences in Young and Older Adults. Journal of Experimental Psychology: Learning, Memory and Cognition, 26 (6), 1378-1391.

tags problems: 

tags memworks: 

Subscribe to semantic memory