A New Yorker cartoon has a man telling his glum wife, “Of course I care about how you imagined I thought you perceived I wanted you to feel.” There are a number of reasons you might find that funny, but the point here is that it is very difficult to follow all the layers. This is a sentence in which mental attributions are made to the 6th level, and this is just about impossible for us to follow without writing it down and/or breaking it down into chunks.

According to one study, while we can comfortably follow a long sequence of events (A causes B, which leads to C, thus producing D, and so on), we can only comfortably follow four levels of intentionality (A believes that B thinks C wants D). At the 5th level (A wants B to believe that C thinks that D wants E), error rates rose sharply to nearly 60% (compared to 5-10% for all levels below that).

Why do we have so much trouble following these nested events, as opposed to a causal chain?

Let’s talk about working memory.

This post is the second part in a four-part series on how education delivery is changing, and the set of literacies required in today’s world. Part 1 looked at the changing world of textbooks. This post looks at the oral equivalent of textbooks: direct instruction or lecturing.

There’s been some recent agitation in education circles about an article by Paul E. Peterson claiming that direct instruction is more effective than the ‘hands-on’ instruction that's so popular nowadays. His claim is based on a recent study that found that increased time on lecture-style teaching versus problem-solving activities improved student test scores results (for math and science, for 8th grade students). Above-average students appeared to benefit more than below-average, although the difference was not statistically significant.

This post is the third part in a four-part series on how education delivery is changing, and the set of literacies required in today’s world. Part 1 looked at the changing world of textbooks; Part 2 looked at direct instruction/lecturing. This post looks at computer learning.

The use of computers in schools and for children at home is another of those issues that has generated a lot of controversy. But like e-readers, they’re not going back in the box. Indeed, there’s apparently been a surge of iPads into preschool and kindergarten classrooms. There are clear dangers with this — and equally clear potential benefits. As always, it all depends how you do it.

But the types of guidance and restrictions needed are different at different ages. Kindergarten is different from elementary is different from middle grade is different from high school, although media reports (and even researchers) rarely emphasize this.

I talk a lot about how working memory constrains what we can process and remember, but there’s another side to this — long-term memory acts on working memory. That is, indeed, the best way of ‘improving’ your working memory — by organizing and strengthening your long-term memory codes in such a way that large networks of relevant material are readily accessible.

Oddly enough, one of the best ways of watching the effect of long-term memory on working memory is through perception.

Perception is where cognition begins. It’s where memory begins. But here’s the thing: it is only in the very beginning, as a newborn baby, that this perception is pure, uncontaminated by experience.

‘Uncontaminated’ makes it sound bad, but of course the shaping of perception by experience is vital. Otherwise we’d all be looking around wide-eyed, wondering what was going on. So we need to shape our perception.

There was an alarming article recently in the Guardian newspaper. It said that in the UK, diabetes is now nearly four times as common as all forms of cancer combined. Some 3.6 million people in the UK are thought to have type 2 diabetes (2.8 are diagnosed, but there’s thought to be a large number undiagnosed) and nearly twice as many people are at high risk of developing it. The bit that really stunned me? Diabetes costs the health service roughly 10% of its entire budget. In north America, one in five men over 50 have diabetes. In some parts of the world, it’s said as much as a quarter of the population have diabetes or even a third (Nauru)! Type 2 diabetes is six times more common in people of South Asian descent, and three times in people of African and African-Caribbean origin.

Why am I talking about diabetes in a blog dedicated to memory and learning? Because diabetes, if left untreated, has a number of complications, several of which impinge on brain function.

I recently reported on a long-running study that found that husbands or wives who care for spouses with dementia are six times more likely to develop Alzheimer’s themselves than those whose spouses don't have it. The most likely cause for this is the great stress of caregiving. Both stress and depression increase the risk of Alzheimer’s, and both are common (well, stress is inescapable!) among caregivers.

Children learn. It’s what they do. And they build themselves over the years from wide-eyed baby to a person that walks and talks and can maybe fix your computer, so it’s no wonder that we have this idea that learning comes so much more easily to them than it does to us. But is it true?

There are two particular areas where children are said to excel: learning language, and learning skills.

Years ago I reported on a 2003 study that challenged the widespread view that young children learn language more easily than anyone older, in regard to vocabulary. Now a new study suggests that the idea doesn’t apply to grammar-learning either.

On a number of occasions I have reported on studies showing that people with expertise in a specific area show larger gray matter volume in relevant areas of the brain. Thus London taxi drivers (who are required to master “The Knowledge” — all the ways and byways of London) have been found to have an increased volume of gray matter in the anterior hippocampus (involved in spatial navigation). Musicians have greater gray matter volume in Broca’s area.

Other research has found that gray matter increases in specific areas can develop surprisingly quickly. For example, when 19 adults learned to match made-up names against four similar shades of green and blue in five 20-minute sessions over three days, the areas of the brain involved in color vision and perception increased significantly.

I recently reported on a finding that older adults whose life-space narrowed to their immediate home were significantly more likely to have a faster rate of global cognitive decline or develop mild cognitive impairment or Alzheimer’s.

Now there are some obvious correlates of being house-bound vs feeling able to travel out of town (such as physical disability), but this relationship between cognitive decline and confined life-space remained after such factors were taken into account. The association is thought to be related to social and mental stimulation.

But I think this association also points to something more specific: the importance of distance, and difference. Different ways of thinking; different contexts. Information (in the broadest sense of the word) that stretches your mind, that gets you out of the grooves of your familiar thoughts.

As we all know, we are living in a time of great changes in education and (in its broadest sense) information technology. In order to swim in these new seas, we and our children need to master new forms of literacy. In this and the next three posts, I want to explore some of the concepts, applications, and experiments that bear on this.

Apparently a Danish university is going to allow students access to the internet during exams. As you can imagine, this step arouses a certain amount of excitement from observers on both sides of the argument. But really it comes down, as always, to goals. What are students supposed to be demonstrating? Their knowledge of facts? Their understanding of principles? Their capacity to draw inferences, make connections, apply them to real-world problems?


Subscribe to Blog